1
|
|
2
|
|
3
|
|
4
|
|
5
|
|
6
|
|
7
|
|
8
|
|
9
|
|
10
|
|
11
|
|
12
|
|
13
|
|
14
|
|
15
|
|
16
|
|
17
|
|
18
|
|
19
|
|
20
|
|
21
|
|
22
|
|
23
|
|
24
|
|
25
|
|
26
|
|
27
|
#include <fcntl.h>
|
28
|
#include <iostream>
|
29
|
|
30
|
|
31
|
|
32
|
#include "AdvancedErrorManagement.h"
|
33
|
#include "NI6259ADC.h"
|
34
|
#include "NI6259ADCInputBroker.h"
|
35
|
|
36
|
|
37
|
|
38
|
|
39
|
|
40
|
|
41
|
|
42
|
|
43
|
|
44
|
namespace MARTe {
|
45
|
NI6259ADC::NI6259ADC() :
|
46
|
DataSourceI(), EmbeddedServiceMethodBinderI(), executor(*this) {
|
47
|
cycleFrequency = 0.F;
|
48
|
numberOfSamples = 0u;
|
49
|
boardId = 0u;
|
50
|
samplingFrequency = 0u;
|
51
|
singleADCFrequency = 0u;
|
52
|
boardFileDescriptor = -1;
|
53
|
deviceName = "";
|
54
|
counter = 0u;
|
55
|
delayDivisor = 0u;
|
56
|
numberOfADCsEnabled = 0u;
|
57
|
clockSampleSource = AI_SAMPLE_SELECT_SI_TC;
|
58
|
clockSamplePolarity = AI_SAMPLE_POLARITY_ACTIVE_HIGH_OR_RISING_EDGE;
|
59
|
clockConvertSource = AI_CONVERT_SELECT_SI2TC;
|
60
|
clockConvertPolarity = AI_CONVERT_POLARITY_RISING_EDGE;
|
61
|
keepRunning = true;
|
62
|
synchronising = false;
|
63
|
cpuMask = 0u;
|
64
|
counterResetFastMux.Create();
|
65
|
fastMux.Create();
|
66
|
|
67
|
currentBufferIdx = 0u;
|
68
|
lastBufferIdx = 0u;
|
69
|
|
70
|
currentBufferOffset = 0u;
|
71
|
lastTimeValue = 0u;
|
72
|
fastMuxSleepTime = 1e-3F;
|
73
|
|
74
|
counterValue = NULL_PTR(uint32 *);
|
75
|
timeValue = NULL_PTR(uint32 *);
|
76
|
|
77
|
dmaReadBuffer = NULL_PTR(int16 *);
|
78
|
dma = NULL_PTR(struct pxi6259_dma *);
|
79
|
dmaOffset = 0u;
|
80
|
dmaChannel = 0u;
|
81
|
|
82
|
uint32 n;
|
83
|
for (n = 0u; n < NI6259ADC_MAX_CHANNELS; n++) {
|
84
|
inputRange[n] = 1u;
|
85
|
inputMode[n] = AI_CHANNEL_TYPE_RSE;
|
86
|
inputPolarity[n] = AI_POLARITY_UNIPOLAR;
|
87
|
adcEnabled[n] = false;
|
88
|
channelsFileDescriptors[n] = -1;
|
89
|
uint32 b;
|
90
|
for (b = 0u; b < NUMBER_OF_BUFFERS; b++) {
|
91
|
channelsMemory[b][n] = NULL_PTR(int16 *);
|
92
|
channelsMemory[b][n] = NULL_PTR(int16 *);
|
93
|
}
|
94
|
}
|
95
|
if (!synchSem.Create()) {
|
96
|
REPORT_ERROR(ErrorManagement::FatalError, "Could not create EventSem.");
|
97
|
}
|
98
|
}
|
99
|
|
100
|
|
101
|
NI6259ADC::~NI6259ADC() {
|
102
|
if (!executor.Stop()) {
|
103
|
if (!executor.Stop()) {
|
104
|
REPORT_ERROR(ErrorManagement::FatalError, "Could not stop SingleThreadService.");
|
105
|
}
|
106
|
}
|
107
|
uint32 n;
|
108
|
if (boardFileDescriptor != -1) {
|
109
|
if (pxi6259_stop_ai(boardFileDescriptor) < 0) {
|
110
|
REPORT_ERROR(ErrorManagement::FatalError, "Could not stop acquisition.");
|
111
|
}
|
112
|
}
|
113
|
for (n = 0u; n < NI6259ADC_MAX_CHANNELS; n++) {
|
114
|
if (channelsFileDescriptors[n] != -1) {
|
115
|
close(channelsFileDescriptors[n]);
|
116
|
}
|
117
|
}
|
118
|
if (boardFileDescriptor != -1) {
|
119
|
close(boardFileDescriptor);
|
120
|
}
|
121
|
if (dma != NULL_PTR(struct pxi6259_dma *)) {
|
122
|
pxi6259_dma_close(dma);
|
123
|
}
|
124
|
for (n = 0u; n < NI6259ADC_MAX_CHANNELS; n++) {
|
125
|
uint32 b;
|
126
|
for (b = 0u; b < NUMBER_OF_BUFFERS; b++) {
|
127
|
delete[] channelsMemory[b][n];
|
128
|
}
|
129
|
}
|
130
|
if (dmaReadBuffer != NULL_PTR(int16 *)) {
|
131
|
delete[] dmaReadBuffer;
|
132
|
}
|
133
|
if (counterValue != NULL_PTR(uint32 *)) {
|
134
|
delete[] counterValue;
|
135
|
}
|
136
|
if (timeValue != NULL_PTR(uint32 *)) {
|
137
|
delete[] timeValue;
|
138
|
}
|
139
|
}
|
140
|
|
141
|
bool NI6259ADC::AllocateMemory() {
|
142
|
return true;
|
143
|
}
|
144
|
|
145
|
uint32 NI6259ADC::GetNumberOfMemoryBuffers() {
|
146
|
return NUMBER_OF_BUFFERS;
|
147
|
}
|
148
|
|
149
|
|
150
|
bool NI6259ADC::GetSignalMemoryBuffer(const uint32 signalIdx, const uint32 bufferIdx, void*& signalAddress) {
|
151
|
bool ok = (signalIdx < (NI6259ADC_MAX_CHANNELS + NI6259ADC_HEADER_SIZE));
|
152
|
if (ok) {
|
153
|
if (signalIdx == 0u) {
|
154
|
if (counterValue != NULL_PTR(uint32 *)) {
|
155
|
signalAddress = reinterpret_cast<void *>(&counterValue[bufferIdx]);
|
156
|
}
|
157
|
}
|
158
|
else if (signalIdx == 1u) {
|
159
|
if (timeValue != NULL_PTR(uint32 *)) {
|
160
|
signalAddress = reinterpret_cast<void *>(&timeValue[bufferIdx]);
|
161
|
}
|
162
|
}
|
163
|
else {
|
164
|
signalAddress = &(channelsMemory[bufferIdx][signalIdx - NI6259ADC_HEADER_SIZE][0]);
|
165
|
}
|
166
|
}
|
167
|
return ok;
|
168
|
}
|
169
|
|
170
|
const char8* NI6259ADC::GetBrokerName(StructuredDataI& data, const SignalDirection direction) {
|
171
|
const char8 *brokerName = NULL_PTR(const char8 *);
|
172
|
if (direction == InputSignals) {
|
173
|
float32 frequency = 0.F;
|
174
|
if (!data.Read("Frequency", frequency)) {
|
175
|
frequency = -1.F;
|
176
|
}
|
177
|
|
178
|
brokerName = "NI6259ADCInputBroker";
|
179
|
if (frequency > 0.F) {
|
180
|
cycleFrequency = frequency;
|
181
|
synchronising = true;
|
182
|
}
|
183
|
}
|
184
|
else {
|
185
|
REPORT_ERROR(ErrorManagement::ParametersError, "DataSource not compatible with OutputSignals");
|
186
|
}
|
187
|
return brokerName;
|
188
|
}
|
189
|
|
190
|
bool NI6259ADC::GetInputBrokers(ReferenceContainer& inputBrokers, const char8* const functionName, void* const gamMemPtr) {
|
191
|
ReferenceT<NI6259ADCInputBroker> broker(new NI6259ADCInputBroker(this));
|
192
|
bool ok = broker.IsValid();
|
193
|
if (ok) {
|
194
|
ok = broker->Init(InputSignals, *this, functionName, gamMemPtr);
|
195
|
}
|
196
|
if (ok) {
|
197
|
ok = inputBrokers.Insert(broker);
|
198
|
}
|
199
|
|
200
|
return ok;
|
201
|
}
|
202
|
|
203
|
|
204
|
bool NI6259ADC::GetOutputBrokers(ReferenceContainer& outputBrokers, const char8* const functionName, void* const gamMemPtr) {
|
205
|
return false;
|
206
|
}
|
207
|
|
208
|
|
209
|
bool NI6259ADC::PrepareNextState(const char8* const currentStateName, const char8* const nextStateName) {
|
210
|
bool ok = (counterResetFastMux.FastLock() == ErrorManagement::NoError);
|
211
|
if (ok) {
|
212
|
counter = 0u;
|
213
|
uint32 b;
|
214
|
for (b = 0u; b < NUMBER_OF_BUFFERS; b++) {
|
215
|
if (counterValue != NULL_PTR(uint32 *)) {
|
216
|
counterValue[b] = 0u;
|
217
|
}
|
218
|
if (timeValue != NULL_PTR(uint32 *)) {
|
219
|
timeValue[b] = 0u;
|
220
|
}
|
221
|
}
|
222
|
currentBufferOffset = 0u;
|
223
|
}
|
224
|
counterResetFastMux.FastUnLock();
|
225
|
if (ok) {
|
226
|
if (executor.GetStatus() == EmbeddedThreadI::OffState) {
|
227
|
keepRunning = true;
|
228
|
if (cpuMask != 0u) {
|
229
|
executor.SetCPUMask(cpuMask);
|
230
|
}
|
231
|
ok = executor.Start();
|
232
|
}
|
233
|
}
|
234
|
return ok;
|
235
|
}
|
236
|
|
237
|
bool NI6259ADC::Synchronise() {
|
238
|
ErrorManagement::ErrorType err(true);
|
239
|
if (synchronising) {
|
240
|
(void) fastMux.FastLock(TTInfiniteWait, fastMuxSleepTime);
|
241
|
if (lastBufferIdx == currentBufferIdx) {
|
242
|
err = !synchSem.Reset();
|
243
|
fastMux.FastUnLock();
|
244
|
if (err.ErrorsCleared()) {
|
245
|
err = synchSem.Wait(TTInfiniteWait);
|
246
|
}
|
247
|
}
|
248
|
else {
|
249
|
fastMux.FastUnLock();
|
250
|
}
|
251
|
}
|
252
|
if (timeValue != NULL_PTR(uint32 *)) {
|
253
|
if (lastTimeValue == timeValue[lastBufferIdx]) {
|
254
|
if (lastTimeValue != 0u) {
|
255
|
REPORT_ERROR(ErrorManagement::Warning, "Repeated time values. Last = %d Current = %d. lastBufferIdx = %d currentBufferIdx = %d", lastTimeValue, timeValue[lastBufferIdx], lastBufferIdx,
|
256
|
currentBufferIdx);
|
257
|
}
|
258
|
}
|
259
|
lastTimeValue = timeValue[lastBufferIdx];
|
260
|
}
|
261
|
|
262
|
return err.ErrorsCleared();
|
263
|
}
|
264
|
|
265
|
bool NI6259ADC::Initialise(StructuredDataI& data) {
|
266
|
std::cout << "INITIALIZE" << std::endl;
|
267
|
bool ok = DataSourceI::Initialise(data);
|
268
|
if (ok) {
|
269
|
ok = data.Read("SamplingFrequency", samplingFrequency);
|
270
|
if (!ok) {
|
271
|
REPORT_ERROR(ErrorManagement::ParametersError, "The SamplingFrequency shall be specified");
|
272
|
}
|
273
|
}
|
274
|
if (ok) {
|
275
|
ok = (samplingFrequency <= 1000000u);
|
276
|
if (!ok) {
|
277
|
REPORT_ERROR(ErrorManagement::Information, "SamplingFrequency must be < 1 MHz");
|
278
|
}
|
279
|
}
|
280
|
if (ok) {
|
281
|
ok = (samplingFrequency != 0u);
|
282
|
if (!ok) {
|
283
|
REPORT_ERROR(ErrorManagement::Information, "SamplingFrequency cannot be zero");
|
284
|
}
|
285
|
}
|
286
|
if (ok) {
|
287
|
ok = data.Read("DeviceName", deviceName);
|
288
|
if (!ok) {
|
289
|
REPORT_ERROR(ErrorManagement::ParametersError, "The DeviceName shall be specified");
|
290
|
}
|
291
|
}
|
292
|
if (ok) {
|
293
|
ok = data.Read("BoardId", boardId);
|
294
|
if (!ok) {
|
295
|
REPORT_ERROR(ErrorManagement::ParametersError, "The BoardId shall be specified");
|
296
|
}
|
297
|
}
|
298
|
if (ok) {
|
299
|
ok = data.Read("DelayDivisor", delayDivisor);
|
300
|
if (!ok) {
|
301
|
REPORT_ERROR(ErrorManagement::ParametersError, "The DelayDivisor shall be specified");
|
302
|
}
|
303
|
}
|
304
|
StreamString clockSampleSourceStr;
|
305
|
if (ok) {
|
306
|
ok = data.Read("ClockSampleSource", clockSampleSourceStr);
|
307
|
if (!ok) {
|
308
|
REPORT_ERROR(ErrorManagement::ParametersError, "The ClockSampleSource shall be specified");
|
309
|
}
|
310
|
}
|
311
|
if (ok) {
|
312
|
if (clockSampleSourceStr == "SI_TC") {
|
313
|
clockSampleSource = AI_SAMPLE_SELECT_SI_TC;
|
314
|
}
|
315
|
else if (clockSampleSourceStr == "PFI0") {
|
316
|
clockSampleSource = AI_SAMPLE_SELECT_PFI0;
|
317
|
}
|
318
|
else if (clockSampleSourceStr == "PFI1") {
|
319
|
clockSampleSource = AI_SAMPLE_SELECT_PFI1;
|
320
|
}
|
321
|
else if (clockSampleSourceStr == "PFI2") {
|
322
|
clockSampleSource = AI_SAMPLE_SELECT_PFI2;
|
323
|
}
|
324
|
else if (clockSampleSourceStr == "PFI3") {
|
325
|
clockSampleSource = AI_SAMPLE_SELECT_PFI3;
|
326
|
}
|
327
|
else if (clockSampleSourceStr == "PFI4") {
|
328
|
clockSampleSource = AI_SAMPLE_SELECT_PFI4;
|
329
|
}
|
330
|
else if (clockSampleSourceStr == "PFI5") {
|
331
|
clockSampleSource = AI_SAMPLE_SELECT_PFI5;
|
332
|
}
|
333
|
else if (clockSampleSourceStr == "PFI6") {
|
334
|
clockSampleSource = AI_SAMPLE_SELECT_PFI6;
|
335
|
}
|
336
|
else if (clockSampleSourceStr == "PFI7") {
|
337
|
clockSampleSource = AI_SAMPLE_SELECT_PFI7;
|
338
|
}
|
339
|
else if (clockSampleSourceStr == "PFI8") {
|
340
|
clockSampleSource = AI_SAMPLE_SELECT_PFI8;
|
341
|
}
|
342
|
else if (clockSampleSourceStr == "PFI9") {
|
343
|
clockSampleSource = AI_SAMPLE_SELECT_PFI9;
|
344
|
}
|
345
|
else if (clockSampleSourceStr == "PFI10") {
|
346
|
clockSampleSource = AI_SAMPLE_SELECT_PFI10;
|
347
|
}
|
348
|
else if (clockSampleSourceStr == "PFI11") {
|
349
|
clockSampleSource = AI_SAMPLE_SELECT_PFI11;
|
350
|
}
|
351
|
else if (clockSampleSourceStr == "PFI12") {
|
352
|
clockSampleSource = AI_SAMPLE_SELECT_PFI12;
|
353
|
}
|
354
|
else if (clockSampleSourceStr == "PFI13") {
|
355
|
clockSampleSource = AI_SAMPLE_SELECT_PFI13;
|
356
|
}
|
357
|
else if (clockSampleSourceStr == "PFI14") {
|
358
|
clockSampleSource = AI_SAMPLE_SELECT_PFI14;
|
359
|
}
|
360
|
else if (clockSampleSourceStr == "PFI15") {
|
361
|
clockSampleSource = AI_SAMPLE_SELECT_PFI15;
|
362
|
}
|
363
|
else if (clockSampleSourceStr == "RTSI0") {
|
364
|
clockSampleSource = AI_SAMPLE_SELECT_RTSI0;
|
365
|
}
|
366
|
else if (clockSampleSourceStr == "RTSI1") {
|
367
|
clockSampleSource = AI_SAMPLE_SELECT_RTSI1;
|
368
|
}
|
369
|
else if (clockSampleSourceStr == "RTSI2") {
|
370
|
clockSampleSource = AI_SAMPLE_SELECT_RTSI2;
|
371
|
}
|
372
|
else if (clockSampleSourceStr == "RTSI3") {
|
373
|
clockSampleSource = AI_SAMPLE_SELECT_RTSI3;
|
374
|
}
|
375
|
else if (clockSampleSourceStr == "RTSI4") {
|
376
|
clockSampleSource = AI_SAMPLE_SELECT_RTSI4;
|
377
|
}
|
378
|
else if (clockSampleSourceStr == "RTSI5") {
|
379
|
clockSampleSource = AI_SAMPLE_SELECT_RTSI5;
|
380
|
}
|
381
|
else if (clockSampleSourceStr == "RTSI6") {
|
382
|
clockSampleSource = AI_SAMPLE_SELECT_RTSI6;
|
383
|
}
|
384
|
else if (clockSampleSourceStr == "RTSI7") {
|
385
|
clockSampleSource = AI_SAMPLE_SELECT_RTSI7;
|
386
|
}
|
387
|
else if (clockSampleSourceStr == "PULSE") {
|
388
|
clockSampleSource = AI_SAMPLE_SELECT_PULSE;
|
389
|
}
|
390
|
else if (clockSampleSourceStr == "GPCRT0_OUT") {
|
391
|
clockSampleSource = AI_SAMPLE_SELECT_GPCRT0_OUT;
|
392
|
}
|
393
|
else if (clockSampleSourceStr == "STAR_TRIGGER") {
|
394
|
clockSampleSource = AI_SAMPLE_SELECT_STAR_TRIGGER;
|
395
|
}
|
396
|
else if (clockSampleSourceStr == "GPCTR1_OUT") {
|
397
|
clockSampleSource = AI_SAMPLE_SELECT_GPCTR1_OUT;
|
398
|
}
|
399
|
else if (clockSampleSourceStr == "SCXI_TRIG1") {
|
400
|
clockSampleSource = AI_SAMPLE_SELECT_SCXI_TRIG1;
|
401
|
}
|
402
|
else if (clockSampleSourceStr == "ANALOG_TRIGGER") {
|
403
|
clockSampleSource = AI_SAMPLE_SELECT_ANALOG_TRIGGER;
|
404
|
}
|
405
|
else if (clockSampleSourceStr == "LOW") {
|
406
|
clockSampleSource = AI_SAMPLE_SELECT_LOW;
|
407
|
}
|
408
|
else {
|
409
|
ok = false;
|
410
|
REPORT_ERROR(ErrorManagement::ParametersError, "Unsupported ClockSampleSource");
|
411
|
}
|
412
|
}
|
413
|
StreamString clockSamplePolarityStr;
|
414
|
if (ok) {
|
415
|
ok = data.Read("ClockSamplePolarity", clockSamplePolarityStr);
|
416
|
if (!ok) {
|
417
|
REPORT_ERROR(ErrorManagement::ParametersError, "The ClockSamplePolarity shall be specified");
|
418
|
}
|
419
|
}
|
420
|
if (ok) {
|
421
|
if (clockSamplePolarityStr == "ACTIVE_HIGH_OR_RISING_EDGE") {
|
422
|
clockSamplePolarity = AI_SAMPLE_POLARITY_ACTIVE_HIGH_OR_RISING_EDGE;
|
423
|
}
|
424
|
else if (clockSamplePolarityStr == "ACTIVE_LOW_OR_FALLING_EDGE") {
|
425
|
clockSamplePolarity = AI_SAMPLE_POLARITY_ACTIVE_LOW_OR_FALLING_EDGE;
|
426
|
}
|
427
|
else {
|
428
|
ok = false;
|
429
|
REPORT_ERROR(ErrorManagement::ParametersError, "Unsupported ClockSamplePolarity");
|
430
|
}
|
431
|
}
|
432
|
StreamString clockConvertSourceStr;
|
433
|
if (ok) {
|
434
|
ok = data.Read("ClockConvertSource", clockConvertSourceStr);
|
435
|
if (!ok) {
|
436
|
REPORT_ERROR(ErrorManagement::ParametersError, "The ClockConvertSource shall be specified");
|
437
|
}
|
438
|
}
|
439
|
if (ok) {
|
440
|
if (clockConvertSourceStr == "SI2TC") {
|
441
|
clockConvertSource = AI_CONVERT_SELECT_SI2TC;
|
442
|
}
|
443
|
else if (clockConvertSourceStr == "PFI0") {
|
444
|
clockConvertSource = AI_CONVERT_SELECT_PFI0;
|
445
|
}
|
446
|
else if (clockConvertSourceStr == "PFI1") {
|
447
|
clockConvertSource = AI_CONVERT_SELECT_PFI1;
|
448
|
}
|
449
|
else if (clockConvertSourceStr == "PFI2") {
|
450
|
clockConvertSource = AI_CONVERT_SELECT_PFI2;
|
451
|
}
|
452
|
else if (clockConvertSourceStr == "PFI3") {
|
453
|
clockConvertSource = AI_CONVERT_SELECT_PFI3;
|
454
|
}
|
455
|
else if (clockConvertSourceStr == "PFI4") {
|
456
|
clockConvertSource = AI_CONVERT_SELECT_PFI4;
|
457
|
}
|
458
|
else if (clockConvertSourceStr == "PFI5") {
|
459
|
clockConvertSource = AI_CONVERT_SELECT_PFI5;
|
460
|
}
|
461
|
else if (clockConvertSourceStr == "PFI6") {
|
462
|
clockConvertSource = AI_CONVERT_SELECT_PFI6;
|
463
|
}
|
464
|
else if (clockConvertSourceStr == "PFI7") {
|
465
|
clockConvertSource = AI_CONVERT_SELECT_PFI7;
|
466
|
}
|
467
|
else if (clockConvertSourceStr == "PFI8") {
|
468
|
clockConvertSource = AI_CONVERT_SELECT_PFI8;
|
469
|
}
|
470
|
else if (clockConvertSourceStr == "PFI9") {
|
471
|
clockConvertSource = AI_CONVERT_SELECT_PFI9;
|
472
|
}
|
473
|
else if (clockConvertSourceStr == "PFI10") {
|
474
|
clockConvertSource = AI_CONVERT_SELECT_PFI10;
|
475
|
}
|
476
|
else if (clockConvertSourceStr == "PFI11") {
|
477
|
clockConvertSource = AI_CONVERT_SELECT_PFI11;
|
478
|
}
|
479
|
else if (clockConvertSourceStr == "PFI12") {
|
480
|
clockConvertSource = AI_CONVERT_SELECT_PFI12;
|
481
|
}
|
482
|
else if (clockConvertSourceStr == "PFI13") {
|
483
|
clockConvertSource = AI_CONVERT_SELECT_PFI13;
|
484
|
}
|
485
|
else if (clockConvertSourceStr == "PFI14") {
|
486
|
clockConvertSource = AI_CONVERT_SELECT_PFI14;
|
487
|
}
|
488
|
else if (clockConvertSourceStr == "PFI15") {
|
489
|
clockConvertSource = AI_CONVERT_SELECT_PFI15;
|
490
|
}
|
491
|
else if (clockConvertSourceStr == "RTSI0") {
|
492
|
clockConvertSource = AI_CONVERT_SELECT_RTSI0;
|
493
|
}
|
494
|
else if (clockConvertSourceStr == "RTSI1") {
|
495
|
clockConvertSource = AI_CONVERT_SELECT_RTSI1;
|
496
|
}
|
497
|
else if (clockConvertSourceStr == "RTSI2") {
|
498
|
clockConvertSource = AI_CONVERT_SELECT_RTSI2;
|
499
|
}
|
500
|
else if (clockConvertSourceStr == "RTSI3") {
|
501
|
clockConvertSource = AI_CONVERT_SELECT_RTSI3;
|
502
|
}
|
503
|
else if (clockConvertSourceStr == "RTSI4") {
|
504
|
clockConvertSource = AI_CONVERT_SELECT_RTSI4;
|
505
|
}
|
506
|
else if (clockConvertSourceStr == "RTSI5") {
|
507
|
clockConvertSource = AI_CONVERT_SELECT_RTSI5;
|
508
|
}
|
509
|
else if (clockConvertSourceStr == "RTSI6") {
|
510
|
clockConvertSource = AI_CONVERT_SELECT_RTSI6;
|
511
|
}
|
512
|
else if (clockConvertSourceStr == "RTSI7") {
|
513
|
clockConvertSource = AI_CONVERT_SELECT_RTSI7;
|
514
|
}
|
515
|
else if (clockConvertSourceStr == "GPCRT0_OUT") {
|
516
|
clockConvertSource = AI_CONVERT_SELECT_GPCRT0_OUT;
|
517
|
}
|
518
|
else if (clockConvertSourceStr == "STAR_TRIGGER") {
|
519
|
clockConvertSource = AI_CONVERT_SELECT_STAR_TRIGGER;
|
520
|
}
|
521
|
else if (clockConvertSourceStr == "ANALOG_TRIGGER") {
|
522
|
clockConvertSource = AI_CONVERT_SELECT_ANALOG_TRIGGER;
|
523
|
}
|
524
|
else if (clockConvertSourceStr == "LOW") {
|
525
|
clockConvertSource = AI_CONVERT_SELECT_LOW;
|
526
|
}
|
527
|
else {
|
528
|
ok = false;
|
529
|
REPORT_ERROR(ErrorManagement::ParametersError, "Unsupported ClockConvertSource");
|
530
|
}
|
531
|
}
|
532
|
StreamString clockConvertPolarityStr;
|
533
|
if (ok) {
|
534
|
ok = data.Read("ClockConvertPolarity", clockConvertPolarityStr);
|
535
|
if (!ok) {
|
536
|
REPORT_ERROR(ErrorManagement::ParametersError, "The ClockConvertPolarity shall be specified");
|
537
|
}
|
538
|
}
|
539
|
if (ok) {
|
540
|
if (clockConvertPolarityStr == "RISING_EDGE") {
|
541
|
clockConvertPolarity = AI_CONVERT_POLARITY_RISING_EDGE;
|
542
|
}
|
543
|
else if (clockConvertPolarityStr == "FALLING_EDGE") {
|
544
|
clockConvertPolarity = AI_CONVERT_POLARITY_FALLING_EDGE;
|
545
|
}
|
546
|
else {
|
547
|
ok = false;
|
548
|
REPORT_ERROR(ErrorManagement::ParametersError, "Unsupported ClockConvertPolarity");
|
549
|
}
|
550
|
}
|
551
|
|
552
|
if (ok) {
|
553
|
if (!data.Read("CPUs", cpuMask)) {
|
554
|
REPORT_ERROR(ErrorManagement::Information, "No CPUs defined for %s", GetName());
|
555
|
}
|
556
|
}
|
557
|
|
558
|
uint32 i = 0u;
|
559
|
if (ok) {
|
560
|
ok = data.MoveRelative("Signals");
|
561
|
if (!ok) {
|
562
|
REPORT_ERROR(ErrorManagement::ParametersError, "Could not move to the Signals section");
|
563
|
}
|
564
|
|
565
|
if (ok) {
|
566
|
ok = signalsDatabase.MoveRelative("Signals");
|
567
|
}
|
568
|
if (ok) {
|
569
|
ok = signalsDatabase.Write("Locked", 1u);
|
570
|
}
|
571
|
if (ok) {
|
572
|
ok = signalsDatabase.MoveToAncestor(1u);
|
573
|
}
|
574
|
while ((i < (NI6259ADC_MAX_CHANNELS + NI6259ADC_HEADER_SIZE)) && (ok)) {
|
575
|
if (data.MoveRelative(data.GetChildName(i))) {
|
576
|
uint32 channelId;
|
577
|
if (data.Read("ChannelId", channelId)) {
|
578
|
ok = (channelId < NI6259ADC_MAX_CHANNELS);
|
579
|
if (!ok) {
|
580
|
REPORT_ERROR(ErrorManagement::ParametersError, "Invalid ChannelId specified.");
|
581
|
}
|
582
|
if (ok) {
|
583
|
adcEnabled[channelId] = true;
|
584
|
float32 range;
|
585
|
numberOfADCsEnabled++;
|
586
|
if (data.Read("InputRange", range)) {
|
587
|
if ((range > 9.99) && (range < 10.01)) {
|
588
|
inputRange[channelId] = 1u;
|
589
|
}
|
590
|
else if ((range > 4.99) && (range < 5.01)) {
|
591
|
inputRange[channelId] = 2u;
|
592
|
}
|
593
|
else if ((range > 1.99) && (range < 2.01)) {
|
594
|
inputRange[channelId] = 3u;
|
595
|
}
|
596
|
else if ((range > 0.99) && (range < 1.01)) {
|
597
|
inputRange[channelId] = 4u;
|
598
|
}
|
599
|
else if ((range > 0.499) && (range < 0.501)) {
|
600
|
inputRange[channelId] = 5u;
|
601
|
}
|
602
|
else if ((range > 0.199) && (range < 0.201)) {
|
603
|
inputRange[channelId] = 6u;
|
604
|
}
|
605
|
else if ((range > 0.099) && (range < 0.101)) {
|
606
|
inputRange[channelId] = 7u;
|
607
|
}
|
608
|
else {
|
609
|
ok = false;
|
610
|
REPORT_ERROR(ErrorManagement::ParametersError, "Unsupported InputRange.");
|
611
|
}
|
612
|
}
|
613
|
StreamString polarity;
|
614
|
if (data.Read("InputPolarity", polarity)) {
|
615
|
if (polarity == "Unipolar") {
|
616
|
inputPolarity[channelId] = AI_POLARITY_UNIPOLAR;
|
617
|
}
|
618
|
else if (polarity == "Bipolar") {
|
619
|
inputPolarity[channelId] = AI_POLARITY_BIPOLAR;
|
620
|
}
|
621
|
else {
|
622
|
ok = false;
|
623
|
REPORT_ERROR(ErrorManagement::ParametersError, "Unsupported InputPolarity.");
|
624
|
}
|
625
|
}
|
626
|
StreamString mode;
|
627
|
if (data.Read("InputMode", mode)) {
|
628
|
if (mode == "Differential") {
|
629
|
inputMode[channelId] = AI_CHANNEL_TYPE_DIFFERENTIAL;
|
630
|
}
|
631
|
else if (mode == "NRSE") {
|
632
|
inputMode[channelId] = AI_CHANNEL_TYPE_NRSE;
|
633
|
}
|
634
|
else if (mode == "RSE") {
|
635
|
inputMode[channelId] = AI_CHANNEL_TYPE_RSE;
|
636
|
}
|
637
|
else {
|
638
|
ok = false;
|
639
|
REPORT_ERROR(ErrorManagement::ParametersError, "Unsupported InputMode.");
|
640
|
}
|
641
|
}
|
642
|
}
|
643
|
}
|
644
|
if (ok) {
|
645
|
ok = data.MoveToAncestor(1u);
|
646
|
}
|
647
|
i++;
|
648
|
}
|
649
|
else {
|
650
|
break;
|
651
|
}
|
652
|
}
|
653
|
}
|
654
|
if (ok) {
|
655
|
ok = data.MoveToAncestor(1u);
|
656
|
if (!ok) {
|
657
|
REPORT_ERROR(ErrorManagement::ParametersError, "Could not move to the parent section");
|
658
|
}
|
659
|
}
|
660
|
return ok;
|
661
|
}
|
662
|
|
663
|
bool NI6259ADC::SetConfiguredDatabase(StructuredDataI& data) {
|
664
|
uint32 i;
|
665
|
bool ok = DataSourceI::SetConfiguredDatabase(data);
|
666
|
if (ok) {
|
667
|
ok = (GetNumberOfSignals() > (NI6259ADC_HEADER_SIZE));
|
668
|
}
|
669
|
if (!ok) {
|
670
|
REPORT_ERROR(ErrorManagement::ParametersError, "At least (%d) signals shall be configured (header + 1 ADC)", NI6259ADC_HEADER_SIZE + 1u);
|
671
|
}
|
672
|
|
673
|
|
674
|
if (ok) {
|
675
|
ok = (GetSignalType(0u) == SignedInteger32Bit);
|
676
|
if (!ok) {
|
677
|
ok = (GetSignalType(0u) == UnsignedInteger32Bit);
|
678
|
}
|
679
|
if (!ok) {
|
680
|
REPORT_ERROR(ErrorManagement::ParametersError, "The first signal (counter) shall be of type SignedInteger32Bit or UnsignedInteger32Bit");
|
681
|
}
|
682
|
}
|
683
|
|
684
|
if (ok) {
|
685
|
ok = (GetSignalType(1u) == SignedInteger32Bit);
|
686
|
if (!ok) {
|
687
|
ok = (GetSignalType(1u) == UnsignedInteger32Bit);
|
688
|
}
|
689
|
if (!ok) {
|
690
|
REPORT_ERROR(ErrorManagement::ParametersError, "The second signal (time) shall be of type SignedInteger32Bit or UnsignedInteger32Bit");
|
691
|
}
|
692
|
}
|
693
|
if (ok) {
|
694
|
for (i = 0u; (i < numberOfADCsEnabled) && (ok); i++) {
|
695
|
ok = (GetSignalType(NI6259ADC_HEADER_SIZE + i) == SignedInteger16Bit);
|
696
|
}
|
697
|
if (!ok) {
|
698
|
REPORT_ERROR(ErrorManagement::ParametersError, "All the ADC signals shall be of type SignedInteger16Bit");
|
699
|
}
|
700
|
}
|
701
|
|
702
|
|
703
|
|
704
|
if (ok) {
|
705
|
ok = synchronising;
|
706
|
if (!ok) {
|
707
|
REPORT_ERROR(ErrorManagement::ParametersError, "The function interacting with this DataSourceI must be synchronising");
|
708
|
}
|
709
|
}
|
710
|
uint32 nOfFunctions = GetNumberOfFunctions();
|
711
|
if (ok) {
|
712
|
ok = (nOfFunctions == 1u);
|
713
|
if (!ok) {
|
714
|
REPORT_ERROR(ErrorManagement::ParametersError, "At most one function shall interact with this DataSourceI");
|
715
|
}
|
716
|
}
|
717
|
|
718
|
uint32 functionIdx;
|
719
|
|
720
|
for (functionIdx = 0u; (functionIdx < nOfFunctions) && (ok); functionIdx++) {
|
721
|
uint32 nOfSignals = 0u;
|
722
|
ok = GetFunctionNumberOfSignals(InputSignals, functionIdx, nOfSignals);
|
723
|
|
724
|
for (i = 0u; (i < nOfSignals) && (ok); i++) {
|
725
|
bool isCounter = false;
|
726
|
bool isTime = false;
|
727
|
uint32 signalIdx = 0u;
|
728
|
uint32 nSamples = 0u;
|
729
|
ok = GetFunctionSignalSamples(InputSignals, functionIdx, i, nSamples);
|
730
|
|
731
|
|
732
|
StreamString signalAlias;
|
733
|
if (ok) {
|
734
|
ok = GetFunctionSignalAlias(InputSignals, functionIdx, i, signalAlias);
|
735
|
}
|
736
|
if (ok) {
|
737
|
ok = GetSignalIndex(signalIdx, signalAlias.Buffer());
|
738
|
}
|
739
|
if (ok) {
|
740
|
isCounter = (signalIdx == 0u);
|
741
|
isTime = (signalIdx == 1u);
|
742
|
}
|
743
|
if (ok) {
|
744
|
if (isCounter) {
|
745
|
if (nSamples > 1u) {
|
746
|
ok = false;
|
747
|
REPORT_ERROR(ErrorManagement::ParametersError, "The first signal (counter) shall have one and only one sample");
|
748
|
}
|
749
|
}
|
750
|
else if (isTime) {
|
751
|
if (nSamples > 1u) {
|
752
|
ok = false;
|
753
|
REPORT_ERROR(ErrorManagement::ParametersError, "The second signal (time) shall have one and only one sample");
|
754
|
}
|
755
|
}
|
756
|
else {
|
757
|
if (numberOfSamples == 0u) {
|
758
|
numberOfSamples = nSamples;
|
759
|
}
|
760
|
else {
|
761
|
if (numberOfSamples != nSamples) {
|
762
|
ok = false;
|
763
|
REPORT_ERROR(ErrorManagement::ParametersError, "All the ADC signals shall have the same number of samples");
|
764
|
}
|
765
|
}
|
766
|
|
767
|
}
|
768
|
}
|
769
|
}
|
770
|
}
|
771
|
if (ok) {
|
772
|
if (synchronising) {
|
773
|
|
774
|
if (numberOfADCsEnabled > 0u) {
|
775
|
singleADCFrequency = samplingFrequency / numberOfADCsEnabled;
|
776
|
float32 totalNumberOfSamplesPerSecond = (static_cast<float32>(numberOfSamples) * cycleFrequency);
|
777
|
ok = (singleADCFrequency == static_cast<uint32>(totalNumberOfSamplesPerSecond));
|
778
|
if (!ok) {
|
779
|
REPORT_ERROR(ErrorManagement::ParametersError, "singleADCFrequency (%u) shall be equal to numberOfSamples * cycleFrequency (%u)",
|
780
|
singleADCFrequency, totalNumberOfSamplesPerSecond);
|
781
|
}
|
782
|
}
|
783
|
}
|
784
|
}
|
785
|
StreamString fullDeviceName;
|
786
|
|
787
|
if (ok) {
|
788
|
ok = fullDeviceName.Printf("%s.%d.ai", deviceName.Buffer(), boardId);
|
789
|
}
|
790
|
if (ok) {
|
791
|
ok = fullDeviceName.Seek(0LLU);
|
792
|
}
|
793
|
if (ok) {
|
794
|
boardFileDescriptor = open(fullDeviceName.Buffer(), O_RDWR);
|
795
|
ok = (boardFileDescriptor > -1);
|
796
|
if (!ok) {
|
797
|
REPORT_ERROR(ErrorManagement::ParametersError, "Could not open device %s", fullDeviceName);
|
798
|
}
|
799
|
}
|
800
|
pxi6259_ai_conf_t adcConfiguration = pxi6259_create_ai_conf();
|
801
|
for (i = 0u; (i < NI6259ADC_MAX_CHANNELS) && (ok); i++) {
|
802
|
if (adcEnabled[i]) {
|
803
|
ok = (pxi6259_add_ai_channel(&adcConfiguration, static_cast<uint8_t>(i), inputPolarity[i], inputRange[i], inputMode[i], 0u) == 0);
|
804
|
uint32 ii = i;
|
805
|
if (ok) {
|
806
|
REPORT_ERROR(ErrorManagement::Information, "Channel %d set with input range %d", ii, inputRange[i]);
|
807
|
}
|
808
|
else {
|
809
|
REPORT_ERROR(ErrorManagement::ParametersError, "Could not set InputRange for channel %d of device %s", ii, fullDeviceName);
|
810
|
}
|
811
|
}
|
812
|
}
|
813
|
if (ok) {
|
814
|
if (numberOfADCsEnabled == 1u) {
|
815
|
ok = (pxi6259_set_ai_convert_clk(&adcConfiguration, 16u, delayDivisor, clockConvertSource, clockConvertPolarity) == 0);
|
816
|
}
|
817
|
else {
|
818
|
ok = (pxi6259_set_ai_convert_clk(&adcConfiguration, 20u, delayDivisor, clockConvertSource, clockConvertPolarity) == 0);
|
819
|
}
|
820
|
if (!ok) {
|
821
|
REPORT_ERROR(ErrorManagement::ParametersError, "Could not set the convert clock for device %s", fullDeviceName);
|
822
|
}
|
823
|
}
|
824
|
|
825
|
|
826
|
|
827
|
|
828
|
|
829
|
|
830
|
|
831
|
|
832
|
|
833
|
|
834
|
|
835
|
if (ok) {
|
836
|
if (numberOfADCsEnabled == 1u) {
|
837
|
if(singleADCFrequency > 1250000)
|
838
|
{
|
839
|
REPORT_ERROR(ErrorManagement::ParametersError, "Frequency for single channel cannot be greater than 1250000Hz %s", fullDeviceName);
|
840
|
ok = false;
|
841
|
}
|
842
|
else
|
843
|
{
|
844
|
uint16 divisions = 20000000/singleADCFrequency;
|
845
|
ok = (pxi6259_set_ai_sample_clk(&adcConfiguration, divisions, delayDivisor, clockSampleSource, clockSamplePolarity) == 0);
|
846
|
}
|
847
|
}
|
848
|
else {
|
849
|
if(singleADCFrequency > 1000000/numberOfADCsEnabled)
|
850
|
{
|
851
|
REPORT_ERROR(ErrorManagement::ParametersError, "Frequency for single channel cannot be greater than 1000000/<number of ADC enabled> Hz %s", fullDeviceName);
|
852
|
ok = false;
|
853
|
}
|
854
|
else
|
855
|
{
|
856
|
uint32 divisions = 20000000/singleADCFrequency;
|
857
|
ok = (pxi6259_set_ai_sample_clk(&adcConfiguration, divisions, delayDivisor, clockSampleSource, clockSamplePolarity) == 0);
|
858
|
}
|
859
|
}
|
860
|
if (!ok) {
|
861
|
REPORT_ERROR(ErrorManagement::ParametersError, "Could not set the clock for device %s", fullDeviceName);
|
862
|
}
|
863
|
}
|
864
|
|
865
|
|
866
|
|
867
|
if (ok) {
|
868
|
ok = (pxi6259_load_ai_conf(boardFileDescriptor, &adcConfiguration) == 0);
|
869
|
if (!ok) {
|
870
|
REPORT_ERROR(ErrorManagement::ParametersError, "Could not load configuration for device %s", fullDeviceName);
|
871
|
}
|
872
|
}
|
873
|
if (ok) {
|
874
|
|
875
|
counterValue = new uint32[NUMBER_OF_BUFFERS];
|
876
|
timeValue = new uint32[NUMBER_OF_BUFFERS];
|
877
|
for (i = 0u; (i < NI6259ADC_MAX_CHANNELS) && (ok); i++) {
|
878
|
uint32 b;
|
879
|
for (b = 0u; (b < NUMBER_OF_BUFFERS) && (ok); b++) {
|
880
|
channelsMemory[b][i] = new int16[numberOfSamples];
|
881
|
}
|
882
|
}
|
883
|
}
|
884
|
|
885
|
if (ok) {
|
886
|
|
887
|
Sleep::Sec(1.0F);
|
888
|
for (i = 0u; (i < NI6259ADC_MAX_CHANNELS) && (ok); i++) {
|
889
|
if (adcEnabled[i]) {
|
890
|
StreamString channelDeviceName;
|
891
|
|
892
|
uint32 ii = i;
|
893
|
ok = channelDeviceName.Printf("%s.%d", fullDeviceName.Buffer(), ii);
|
894
|
if (ok) {
|
895
|
ok = channelDeviceName.Seek(0ULL);
|
896
|
}
|
897
|
if (ok) {
|
898
|
channelsFileDescriptors[i] = open(channelDeviceName.Buffer(), O_RDWR);
|
899
|
ok = (channelsFileDescriptors[i] > -1);
|
900
|
if (!ok) {
|
901
|
REPORT_ERROR(ErrorManagement::ParametersError, "Could not open device %s", channelDeviceName);
|
902
|
}
|
903
|
}
|
904
|
}
|
905
|
}
|
906
|
}
|
907
|
if (ok) {
|
908
|
ok = (pxi6259_start_ai(boardFileDescriptor) == 0);
|
909
|
if (!ok) {
|
910
|
REPORT_ERROR(ErrorManagement::ParametersError, "Could not start the device %s", fullDeviceName);
|
911
|
}
|
912
|
}
|
913
|
if (ok) {
|
914
|
dma = pxi6259_dma_init(static_cast<int32>(boardId));
|
915
|
ok = (dma != NULL_PTR(struct pxi6259_dma *));
|
916
|
if (!ok) {
|
917
|
REPORT_ERROR(ErrorManagement::ParametersError, "Could not set the dma for device %s", fullDeviceName);
|
918
|
}
|
919
|
}
|
920
|
if (ok) {
|
921
|
|
922
|
if (dma->ai.count > 0u) {
|
923
|
dmaReadBuffer = new int16[dma->ai.count];
|
924
|
}
|
925
|
}
|
926
|
|
927
|
return ok;
|
928
|
}
|
929
|
|
930
|
ErrorManagement::ErrorType NI6259ADC::CopyFromDMA(const size_t numberOfSamplesFromDMA) {
|
931
|
ErrorManagement::ErrorType err;
|
932
|
uint32 s = 0u;
|
933
|
if (dmaReadBuffer != NULL_PTR(int16 *)) {
|
934
|
(void) (counterResetFastMux.FastLock());
|
935
|
while (s < (numberOfSamplesFromDMA)) {
|
936
|
channelsMemory[currentBufferIdx][dmaChannel][currentBufferOffset] = dmaReadBuffer[s];
|
937
|
s++;
|
938
|
dmaChannel++;
|
939
|
|
940
|
if (dmaChannel == numberOfADCsEnabled) {
|
941
|
dmaChannel = 0u;
|
942
|
currentBufferOffset++;
|
943
|
if (currentBufferOffset == numberOfSamples) {
|
944
|
currentBufferOffset = 0u;
|
945
|
|
946
|
(void) fastMux.FastLock(TTInfiniteWait, fastMuxSleepTime);
|
947
|
currentBufferIdx++;
|
948
|
if (currentBufferIdx == NUMBER_OF_BUFFERS) {
|
949
|
currentBufferIdx = 0u;
|
950
|
}
|
951
|
|
952
|
if (counterValue != NULL_PTR(uint32 *)) {
|
953
|
counterValue[currentBufferIdx] = counter;
|
954
|
}
|
955
|
if (counter > 0u) {
|
956
|
uint64 counterSamples = counter;
|
957
|
counterSamples *= numberOfSamples;
|
958
|
counterSamples *= 1000000LLU;
|
959
|
|
960
|
counterSamples /= singleADCFrequency;
|
961
|
if (timeValue != NULL_PTR(uint32 *)) {
|
962
|
timeValue[currentBufferIdx] = static_cast<uint32>(counterSamples);
|
963
|
}
|
964
|
}
|
965
|
else {
|
966
|
if (timeValue != NULL_PTR(uint32 *)) {
|
967
|
timeValue[currentBufferIdx] = 0u;
|
968
|
}
|
969
|
}
|
970
|
if (synchronising) {
|
971
|
err = !synchSem.Post();
|
972
|
}
|
973
|
fastMux.FastUnLock();
|
974
|
counter++;
|
975
|
}
|
976
|
}
|
977
|
}
|
978
|
counterResetFastMux.FastUnLock();
|
979
|
}
|
980
|
return err;
|
981
|
}
|
982
|
|
983
|
ErrorManagement::ErrorType NI6259ADC::Execute(ExecutionInfo& info) {
|
984
|
ErrorManagement::ErrorType err;
|
985
|
if (info.GetStage() == ExecutionInfo::TerminationStage) {
|
986
|
keepRunning = false;
|
987
|
}
|
988
|
else if (info.GetStage() == ExecutionInfo::StartupStage) {
|
989
|
|
990
|
|
991
|
|
992
|
|
993
|
|
994
|
|
995
|
|
996
|
|
997
|
|
998
|
|
999
|
|
1000
|
|
1001
|
|
1002
|
|
1003
|
|
1004
|
|
1005
|
|
1006
|
|
1007
|
|
1008
|
|
1009
|
|
1010
|
|
1011
|
|
1012
|
|
1013
|
|
1014
|
|
1015
|
|
1016
|
|
1017
|
|
1018
|
|
1019
|
|
1020
|
|
1021
|
|
1022
|
|
1023
|
|
1024
|
|
1025
|
|
1026
|
|
1027
|
|
1028
|
|
1029
|
|
1030
|
|
1031
|
|
1032
|
|
1033
|
|
1034
|
|
1035
|
|
1036
|
|
1037
|
|
1038
|
|
1039
|
|
1040
|
|
1041
|
|
1042
|
|
1043
|
|
1044
|
|
1045
|
|
1046
|
|
1047
|
|
1048
|
|
1049
|
|
1050
|
|
1051
|
|
1052
|
|
1053
|
|
1054
|
|
1055
|
|
1056
|
|
1057
|
|
1058
|
|
1059
|
|
1060
|
|
1061
|
|
1062
|
|